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SECONDARY INSTABILITY IN 3D MAGNETIC RECONNECTION

I. INTRODUCTION

Magnetic reconnection is believed to be responsible for a wide variety of energetic

phenomena in both laboratory and astrophysical plasmas, e.g., tokamak disruptions, ter-

restrial substorms, and solar and stellar flares. However, in astrophysical situations the

magnetic Reynolds number is often so large that the well-accepted linear and non-linear

reconnection processes are too slow to explain the phenomena of interest. For example, it is

well known that the tearing mode growth time and the Sweet-Parker reconnection rate are

too slow to account for solar flares '. Hence, a crucial issue for astrophysical plasmas is the

determination of mechanisms that can increase the rate of tearing. Turbulence is probably

the most commonly invoked process by which energy release in magnetic reconnection can

be increased 2 s 4 5 6

However, the way in which a laminar reconnection process becomes turbulent has

remained somewhat mysterious. This is due to several factors: Simultaneous observations

of all the relevant fields at all the relevant spatial scales are presently not available for solar,

space, and astrophysical plasmas. Laboratory reconnection experiments are very difficult

to perform and diagnose, and theory and computation are hampered by the complexity of
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the governing equations. These difficulties are not as severe for non-conducting fluids, and

consequently somewhat more progress has been made on the transition problem in Navier-

Stokes fluids. One very interesting finding has been that for a wide variety of simple flows

an ideal secondary instability can be the first step in the transition process ' '. When the

secondary instability attains a large amplitude, there is a breakdown of the laminar flow

structure, generation of small scale structure, and chaotic behavior of the flow variables.

Paraphrasing Orszag and Patera ' the three steps in the secondary instability process

are:

[1] a one-dimensional primary equilibrium is destabilized by a two-dimensional (2D) pri-

mary linear disturbance;

[2] the primary linear disturbance saturates and a two-dimensional secondary equilibrium

state develops; and

[3] the two-dimensional secondary equilibrium state is destabilized by an ideal three-

dimensional (3D) secondary instability.

Important flows in which such secondary instabilities occur are flat plate boundary layers 9,

plane channel flows (Poiseuille and Couette), 10 9, Hagen-Poiseuille flow 9, Taylor-Couette

flow 11 and free-shear layers 12 1.. It is well-known that the tearing instability in a current-

sheet geometry exhibits both step [1] and step [2]. Step [1] is probably the most extensively

studied problem in plasma physics, starting with the basic paper by Furth, Killeen and

Rosenbluth "4. Step [2] was first demonstrated by Rutherford, " and has been confirmed

by others ". One of the key results of the present paper is that reconnection in a magnetic

neutral sheet also exhibits Step [3]. To our knowledge, the possibility of this happening

was first raised by Montgomery 17

Why is a three-step process necessary for increasing the rate at which magnetic energy

is released ? To put it another way, since going to three spatial dimensions seems to make

a difference, why not just start with a fully three-dimensional primary perturbation ? This

is inadequate for the following reason. The two-dimensional primary linear disturbances
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grow at rates which are too slow to explain the phenomena of interest. For example,

typical growth times in the solar corona are estimated to be of order tens of days, whereas

solar flares are observed to occur on the time scale of minutes. In section 2 of this paper,

we will show numerically that the effect of increasing three-dimensionality of the primary

modes is to decrease their growth rate. This also can be shown analytically by proving

a theorem analogous to the Squire's theorem in hydrodynamics, which states that under

certain very broad conditions, two-dimensional primary perturbations will grow faster

than three-dimensional primary perturbations 1. Hence, the time-scale problem exists

a fortiori in three-dimensions, and some other process must be invoked to account for

fast release of magnetic energy. In this paper we will show that what really makes a

difference in timescales is the basic state, i.e. if instead of the standard ID neutral sheet

we use a neutral sheet plus a large dose of its 2D unstable primary eigenfunction, then

ideal instabilities can be found.

The program of research described in this paper requires a reformulation of some of

the usual MHD theory along more classical hydrodynamic lines, elements of which we have

reported on elsewhere. The problems of stability and transition in electric current sheets

are formally similar to problems in hydrodynamics 19 17. For example, the hydrodynamic

free-shear layer is, broadly speaking, a configuration similar to the magnetic neutral layer

". This suggests that techniques developed for studying the hydrodynamic transition

problem could profitably be employed in investigations of magnetic reconnection. This

has been done, for example, for primary instabilities of.magnetized flows 20 21 22

We have previously derived and solved a 2D magnetohydrodynamic analogue of the

Orr-Sommerfeld equation 23 for an investigation of Step [1] 24. Two significant results

emerged. First, it appears that, for linear resistive instability to occur, it is necessary that

the electric current profile have inflection points. Steep gradients are not enough. Second,

we determined the existence of a stability boundary which depends on the geometrical

mean of the viscous and resistive Lundquist numbers. This has been seen by others 25

26. In a subsequent investigation of Step [2], we considered the nonlinear evolution of two-
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dimensional perturbed electric current sheets 7. We observed the nonlinear saturation

of unstable eigenmodes. The secondary equilibrium state was close to that predicted by

means of a Landau stability equation. This analytical technique was first used by Stuart
" in a study of the nonlinear stability of plane Poiseulle flow and Taylor-Couette flow.

When random initial conditions were used, a more complex e- -31ution toward saturation

occurred, with secondary tearing and coalescence observed o

The present calculations extend the previous work to three spatial dimensions. These

calculations differ from the previous ones in the boundary conditions imposed in the direc-

tion across the neutral sheet. Also, they differ in that the mean magnetic field is allowed

to diffuse, i.e. it is not supported by an electric field. Hence the saturated state of the 2D

disturbances is not really an equilibrium or a steady state. Instead, the diffusion of the

mean field can be substantial. However, as will be seen, the secondary instability discussed

in this paper seems to be relatively insensitive to this decay.

In the second section of this paper we set up the foundation for a discussion of the fully

three-dimensional nonlinear problem. Here we first describe the governing equations, and

boundary conditions. The primary equilibrium is then given, followed by a discussion of

its two and three dimensional primary resistive instabilities. An Orr-Sommerfeld equation

is derived and solved for the primary linear instabilities. Additional Squire equations are

given for obtaining the three-dimensional primary eigenfunctions. These previous sections

all lead to the third section, which is the most significant part of this paper. In this

section we describe the evidence for secondary three-dimensional linear instabilities. We

will present numerical evidence that this instability is ideal. We also discuss the energetics

of the mode in this section. In particular, we will show that the dominant energy transfer is

from the one-dimensional to the three dimensional fields. We will further show that onset

of the instability can be predicted by means of a classical potential energy analysis. In the

fourth section we give a preliminary description of what happens when the secondary modes

attain sufficient amplitude to become nonlinear, using high-resolution, fully nonlinear 3D

numerical simulations. These simulation indicate that the electric current sheet becomes
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turbulent, and then "relaminarizes" due to dissipation into a new, fully three-dimensional

tertiary state. We will report on these simulations more fully in a subsequent paper. The

last section contains some concluding remarks.

II. EQUILIBRIUM AND PRIMARY INSTABILITY

A. The Governing Equations

We begin with the dissipative, incompressible, magnetohydrodynamic (MHD) equa-

tions, written in a dimensionless rotation form:

- =v xw--VII+MAjx B+ V v, (la)
R

V-v=0, (lb)
OB _v
at -VxvxB-- V xVxB, (lc)

and,

V.B=O, (1D)

where v(x,t) = (u,v, w) = flow velocity, w(x,t) = V x v = vorticity, B(x, t) = magnetic

field, j(x, t) = V x B = electric current density, lI(x, t) = mechanical pressure + kinetic

energy density, R = Reynolds number (with the viscosity assumed to be constant and

uniform), R, = magnetic Revnolds number (with the resistivity assumed to be constant

and uniform), and MA = Alfvin Mach number ( = 0 for the pure Navier-Stokes problem).

In this representation, B is measured in units of the background field far from the neutral

sheet. The velocities are measured in units of the Alfvin speed, CA = Bo/(47rp) 1 where

the mass density, p, is assumed to be constant and uniform. Hence, MA = 1. For a

characteristic distance, L0 , defined by the neutral sheet width, the time is measured in

units of the Alfvin transit time, LO/CA. The regimes of applicability of such incompressible

models have been discussed elsewhere 31 32 3
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B. Boundary Conditions

In analogy with the hydrodynamic problems, we refer to the spatial coordinate along

the magnetic field (z) as the fieldwise direction, the spatial coordinate across the magnetic

neutral sheet (z) as the cross-sheet direction, and the remaining spatial coordinate (y) as

the sheetwise direction. We consider a system with periodic boundary conditions in the

fieldwise and sheetwise directions. In the cross-sheet direction we want the magnetic field

to merge into the background field as it moves away in z from the neutral sheet. Hence

we want to enforce

B.(±oo) = ±1;B,(±oo) = Bz(±oo) = 0. (2)

We impose this computationally with free-slip boundary conditions 34

- - Bz = 0 at L 3  (3a)

and
- = w = 0 at L 3 , (3b)8z az

where L3 is the computational boundary in the cross-sheet direction.

C. Primary Equilibrium

To obtain the primary instability, we assume the following linearized decomposition:

v(X,y,z,t) = Uo(z)a2 + v'(a,y,z,i), (4a)

B(z,y,z,t) = Bo(z)62 + b'(xy,z,t), (4b)

and for the pressure:

P(X,y,z,t) = Po(z) + p'(z,y,z,t). (4c)
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For the primary neutral sheet equilibrium we choose

Uo(z) = 0, (5a)

and,

Bo(z) = tanhz. (5b)

The pressure is determined by taking the divergence of equation la, and solving the re-

suiting Poisson equation. This configuration has been studied by, among others, Schnack

and Killeen s

D. Primary Two- and Three-dimensional Instabilities

After linearizing equations la - ld about the equilibrium given in equations 5, we

assume that the first-order terms can be decomposed in the following manner:

f'(=,Yz,0 = (z) eCia+il-iWt, (6)

in which a is the fieldwise wavenumber, 3 is the sheetwise wavenumber, and w is the

complex growth rate. After eliminating the pressure, the primary linear perturbations we

will employ are unstable eigenfunctions of the following equations, wbere D = d/dz and

the tildes have been dropped:

{D 2 - (a 2 +,62 )}1, - iaRUo{D2 - (a 2 + 2 )}W + iaR(D 2 Uo)W

(7a)

- iwR{D 2 - (a 2 + 32)}w + iaRM2A[(D2 Bo)b, - Bo{D 2 - (a 2 +/32)}b.],

{D 2 - (a2 + #2) - iaR,7 Uo + iwR,}b, = -iaRBow, (7b)

with the boundary conditions:

, ± (oc) = D,,(±oo) = bz(±oo) = 0. (7c)
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Equations 7 are a generalization of the 3D Orr-Sommerfeld equation to include magnetic

effects. Note also that we have written equation 7 in a general form which includes a mean

flow.

The linear equations are solved using the Chebyshev i" technique, which was first

applied to the Orr-Sommerfeld equation by Orszag "6 The mesh is stretched in the ver-

tical direction with a hyperbolic mapping ". For the velocity free shear layer, the code

reproduces the linear growth rates reported by Metcalfe et al. 13 when MA = 0.

It can be shown that in the limit of zero viscosity and resistivity, there are no unstable

modes of equation 7. A proof of this point is given in Appendix A. When the resistivity

and viscosity are finite, the unstable modes of equation 7 have an imaginary eigenvalue,

real w, and imaginary b,. Growth rates for some of these modes are provided in Table I,

where a unit magnetic Prandtl (i.e. Rm = R) number has been assumed. All of the cases

listed in Table I have a = 0.2. Note that the system size is scaled by width of the neutral

sheet, so that a = 0.2 implies a wavelength for the perturbation of 107r times the sheet

width. In Table I, the 2D primary instability growth rates are listed under 72D, and the

3D rates are listed under 73D. The last column of Table I will be discussed in the section

on secondary instability. Of particular interest is the well-known decrease in the growth

rate as the resistive Reynolds number increases (note that since we have set R = Rm, the

growth rates in Table I also reflect viscous effects, i.e., a stabilization as R decreases).

Figure 1 shows some eigenfunctions for this problem to illustrate the effect of increasing

the sheetwise wavenumber. In this figure, the modes are normalized to the maximum value

of b,. Figure la is the familiar primary 2D unstable eigenfunction, while figures lb and

1c show unstable modes with 3 values of 0.2 and 0.5, respectively. The mode appears to

concentrate about the neutral line with increasing ,3, and the ratio of the maximum of w to

the maximum of b, decreases. Figure ld shows a purely damped mode for 0 = 2. We note

here that the linear analysis also can be done for more physically interesting, i.e. much

higher, values of the Reynolds numbers. We limit ourselves here to Reynolds numbers

for which we can presently perform accurate, three-dimensional, fully nonlinear numerical
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simulations.

The most important result for this paper concerns the variation of primary instability

growth rates with sheetwise wavenumber. Figure 2 shows some computed unstable eigen-

values of equations 7 as a function of the sheetwise wavenumber, 0. It is evident from the

figure that increasing P leads to a decrease in the primary instability growth rate. Above

/P = 0.2, there is a linear decrease in growth rate. At high enough / a complete stabiliza-

tion occurs. This can, in fact, be shown analytically by proving a Squire's theorem for the

3-D system, i.e., the three dimensional linear modes always have a lower growth rate than

the 2D modes. For this reason, one might conclude that 3D modes could be safely ignored

in considering the evolution of this system. The calculations presented in section 3 will

invalidate this assumption.

Once the eigenfunctions have been determined from equations 7 the other components

of the fields must be determined for use in initializing the nonlinear code. In two spatial

dimensions this is easily done by means of the solenoidality relation for the velocity and

magnetic fields. In three spatial dimensions, we must solve a perturbed vorticity (or Squire)

equation:

{D 2 
- (a 2 + /2) - iaRUo}(8u - av) + iaM2 RBo(9b2 - abe) =

(8a)

- iwR(83u - av) - ,R[(DUo)w - MA (DBo)b.].

and a similar equation for the perturbed electric current:

{D 2 - (a 2 + #2) - iaRUo }(Sbz - abv) + iaR,,Bo(9u - av)

(8b)

- iwR, (Sb - aby) - 9R,[(DU0 )bz - (DBo)w].

with the boundary conditions:

/9u(±oo) - av(±oo) = 0 (8c)

9



3b2(±oo) - abv(±oo) = 0 (Sd)

The remaining field components then can be determined by using the solenoidality relations

for the velocity and magnetic field.

E. Secondary Equilibrium - Nonlinear Saturation of 2D Primary Instability

Since the 2D unstable eigenmode has the fastest growth rate, it is reasonable to

suppose that it will be the first mode to develop to the point where nonlinear effects

become significant. It has been determined, both analytically and numerically, that this

mode saturates into a secondary equilibrium when it becomes sufficiently large. Rutherford

" in his classic analysis showed that the tearing mode changes from exponential to linear

growth at a mode amplitude which varies approximately inversely with magnetic Reynolds

number. Hence, the mode saturates at very low amplitude, whereupon the reconnection

rate becomes that due simply to ohmic diffusion. The conclusion is that tearing in two

dimensions cannot account for the rapid energy release observed in phenomena such as

solar flares.

Figure 3 shows the magnetic topology, electric current, and vorticity for a system close

to the saturated state. This resembles the initial state that we use for the three-dimensional

perturbation. We note in Figure 3a the familiar magnetic island -.1hich characterizes the

tearing mode, in Figure 3b the electric current filamentation at the magnetic X-point ",

and in Figure 3c the flow pattern. Typically, the kinetic energy of the 2D saturated state

is much less than the magnetic energy, which demonstrates that the evolution has become

dominated by diffusion.

III. SECONDARY INSTABILITY

In this chapter we provide numerical evidence for the existence of a secondary insta-

bility of the neutral sheet, investigate its parametric dependence, and show that the onset

of the instability is predictable by a classical potential energy analysis. The investigation
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relies on numerical simulation of Equations 1. The semi-implicit Fourier pseudospectra! -

Fourier collocation scheme that we employ is described in Appendix B.

A. Evidence for a secondary instability

We initialize the magnetic field in the following way:

B(z, y,z,t = 0) = Bo(z)6. + E2dB2d(z)?'0 + csdB3d(z)e i Q(Z+0)+i0, (9a)

where f2d is the amplitude of the two-dimensional MHD Orr-Sommerfeld eigenmode (B2d),

fsd is the amplitude of the three-dimensional MHD Orr-Sommerfeld eigenmode (B3d), and

4 is the phase shift between the 2D and the 3D mode (set to 7r/2 throughout). For the

velocity field we have:

v(OY,z,t = 0) = I2dV2d(z)ei " + fdVd(z)e( t(c + ) + i#V. (9b)

The magnetic field eigenfunctions are normalized so that max I B (z) = 1, and the velocity

eigenfunctions are scaled proportionately (see Figure 1).

We now demonstrate that the nonlinearly saturated two-dimensional tearing layer

is subject to three-dimensional, secondary instabilities. To do this we first prepare an

initial state consisting of the tearing layer plus a large dose of the 2D primary unstable

eigenfunction (62d = .02), so that the system is close to the 2D nonlinearly saturated state.

Previous research has shown that the form of the perturbation is relatively unchanged

in the saturated state, i.e., the "shape assumption" holds 27 2s We then perturb this

state with a much smaller dose of the appropriate 3D primary unstable eigenfunction

(fad = 1 x 10-6). These initial conditions represent a state that is highly probable, since

the primary 2D modes outstrip the 3D primary modes and saturate first, creating a kind

of secondary equilibrium in which the 3D disturbances subsequently evolve.

One respect in which our simulation might differ from others is that we do not hinder

the evolution of the current layer, but instead allow it to dissipate freely. We can quantify
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the spreading of the current layer by defining a mean current thickness as:

Ic :--Bz OB ._ (10)

where V equals the system volume, and Bezt denotes the magnetic field exterior to the

tearing layer, i.e., 1. Furthermore, the bracket notation is used to denote volume integrals:
(f) = f 1 r 2 ' f_ f dz dy dz. Initially, 4, = 1 by definition. For case 9 (see Table I)

with R, = 200, at t = 200, c = 3.10. At the same time, for case 18 with R,, 1000,

IC = 1.48. Hence the spreading of the current layer due to dissipation is significant.

However, as we will show, the evolution of the secondary mode appears to be relatively

insensitive to this spreading.

Although we initialize the fields with one mode in z, after a few Alfvdn times when

the system is near the saturated state, more than one mode will be excited. Hence, it is

more accurate to represent the fields as having the form of a 2D tearing layer perturbed

by a 3D disturbance:

B = B( 1)(z,t)c' + f h2(z't)e'cmz + 3 B)(zt)et"emzet~n, (e1a)

I,'1<M/2 n=±1 Im<M/2

and

vE= +i+ n '""m " (11b)
Iml<M/2 n =+I ImI<M/2

where the tilde denotes the Fourier coefficient.

To track the evolution of the 3D secondary modes, we define a 3D total energy given

by

E3D J(IB (3)12 + Iv( 3)12)d3X. (12a)
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This, as well as the 2D energy, given by:

E2D = 1 f (IB(2)12 + Iv( 2)12)d 3z, (12b)

is shown in figure 4, for case 9 of Table I. After about fifty Alfvin times E2D flattens out

and a linear phase is evident in ESD. As previously noted, the growth of the 3D energy is

relatively independent of the dissipative spreading of the neutral sheet. Results of several

of these runs, with different values of 0 and the Reynolds numbers, are shown in Table I.

In this table we give the total 3D energy average growth rates for the secondary instability,

-, where

1 dESD

2E3D dt (13)

and 200 < t < 250. For case 9, for example, the secondary mode grows at more than

double the rate of the primary 3D mode. All of the runs listed in Table I were performed

with a = 0.2. Limited tests of a variation for case 3 in the table indicated a falloff in 7 for

higher and lower a than 0.2. We did not investigate further this rather fortuitous result.

Several conclusions can be drawn from the information presented in Table I: (a.) There

is an increase in the secondary mode growth rate at low Reynolds number, then a relative

independence at higher Reynolds numbers; (b.) There is an instability threshold in the

Reynolds number, i.e., the secondary mode can be stabilized if there is enough diffusion.

This might explain why this mode is not observed in the reported collisionless tearing

experiments, which have had magnetic Reynolds numbers of 10 to 2038 39, and (c.) There is

a high P cutoff of the secondary instability. The cutoff value in 8 increases as the Reynolds

numbers increase and is given approximately by fic - .25RM%2. However, this estimate is

clouded somewhat by our use of a unit magnetic Prandtl number. Furthermore, it is of

interest that linearly stable 3D primary eigenmodes can trigger 3D secondary instabilities.

Unfortunately, we are somewhat limited in the magnitude of Reynolds numbers that we

can simulate accurately with direct numerical simulation. However, we note that even at
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these modest values, the growth rates for the secondary instability can exceed the resistive

primary instability growth rates. In addition, these latter rates should decrease as the

magnetic Reynolds number is increased.

B. Energetics of the secondary instability

While the behavior of -y is indicative of a secondary linear instability, it provides little

insight into the dynamics of the unstable mode. In particular, we would like more infor-

mation on the interactions between the 1D, 2D, and 3D fields. To obtain this information

we generalize the hydrodynamic analysis of Orszag and Patera (1983) to the MHD case.

Hence, we now decompose the magnetic and velocity fields so that the various fields

are mutually orthogonal (time dependence of the fields is assumed): The one dimensional

fields are given by:

B[1](z) = (B(1 (z) + Bo (z))6 , (14a)

and

v[1]z) = (U(z) + ()Z)) = 0 + 0 = 0 (14b).

For the two-dimensional fields we have:

B[] B(2)(X,z) - B(2)(Z) 2,, (14c)

v[2](z,z) = v( 2 )(z,z)- (2) (Z),. (14d)

The three-dimensional fields are given by:

B (, Y, Z) = B(3)(z, y, z), (14e)

V[3](Xy, Z) = v(3)(X, y, z). (14f)

14



The total energies (magnetic plus kinetic) corresponding to these fields evolve as:

dE1 = T 1 2 - T13 + D 1, (15a)

dt

dE2 T12  - T2 3 + D2 , (15b)

dt

dE 3 =T 13 + T2 3 + D3. (15c)

dt

Our interest is in the last equation, where E3 represents the energy in the 3D fields,

T13 represents the interaction of the 1D and 3D fields, T23 represents the interaction of

the 2D and 3D fields, and D3 represents the ohmic and viscous diffusion of the 3D field.

Interpretation of the other terms follows from this.

It is straightforward to evaluate T13 from the equation 15a, viz.,

= -JB[] . (V X x'] B 13 )dz. (16)

T23 is then given by:

T23 = fv aI . (v x w)d 3 z + vaj -(V x B x B)dz + fB['] . (v x B)d'z - T 3, (17)

and D3 is given by:

D1 3 1 IV x B[3112 d z + IV x v[3]1 2d z. (18)

To obtain a rate for energy transfer to and from the 3D mode, we compute

Ti T+E3 +- = T13 + T23 + D3, (19)= 2E'--- 2E, 2E,

where E3 = f(IB [3]12+ Iv[] 12 )d3z. To check the accuracy of this decomposition we compare

with y.
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Figure 5 shows T13 ,T 23 ,D3 and F as functions of time for case 9 of Table I. It is

apparent that the total growth rate is almost entirely due to the interaction between the

1D and 3D fields. The 2D field extracts energy from the 3D field during the secondary linear

phase. The dissipation of course provides an energy sink throughout the run. Figure 6

shows the same quantities for case 11, to show how the secondary mode transfer terms vary

with P. This case is near to the maximum growth rate observed in /f, all other parameters

being the same (see Table I). An increase in T 13 is seen, but this is almost balanced by

a decrease in T 2 3. Figure 7 shows the same quantities for case 13, which is nearly stable.

It can be seen that increases in 6 lead to increased dissipation through decreased D 3,

whereas the transfer term T 13 does not change very much. Finally, Figure 8 shows the

same quantities for case 16, to illustrate the effect of increasing the Reynolds numbers.

Comparing this to figure 5, we see that T 13 remains about the same, D3 increases, and

T 23 decreases. However, the secondary mode growth rate remains about the same.

C. Potential Energy Analysis

As previously noted, the primary equilibrium is stable to ideal perturbations (we

prove this point in Appendix A). On the other hand, we have also seen evidence that

the secondary instability is ideal. The secondary instability growth rates listed in Table I

appear to be relatively insensitive to changes in the Reynolds numbers. Detailed analysis of

energy transfer shows that the 1D to 3D transfer also is relatively unchanged by variation of

Reynolds numbers (compare figure 5 and 8). These observations suggest that the stability

of the secondary mode might be predictable by means of a classical energy analysis for

ideal instability 40

Since the kinetic energy of the secondary equilibrium is much less than the magnetic

energy, we assume that the secondary equilibrium state is static, i.e.,

vf } = 0, (20a)

and

B -1 = B"1](z)i, + B[21(X, z). (20b)
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We can then calculate the potential energy 8W relevant to our system

6W = J I{IV X x B{ 1 ]}]2  x (V x B{'))] (V x [V[S] x B{1}])}d 3 . (21)

Note that the surface terms drop out due to our boundary conditions. If 6W is less than

zero, the system is unstable. Figure 10 shows the same data as in figure 4, along with

the sign of 6W as a function of time for case 9 of Table I. Note that 6W remains positive

approximately until the 2D mode has saturated. It then becomes negative at about the

time that the 3D mode takes off. This provides additional evidence that the secondary

instability is ideal, i.e., independent of the Reynolds numbers.

IV. EVOLUTION OF PERTURBATIONS INTO THE FULLY NONLINEAR

REGIME

One important remaining question is what happens when the secondary modes become

nonlinear ? Is there a transition to turbulence, or does the mode saturate into a tertiary

equilibrium ? Here we briefly describe some high resolution runs which suggest that the

answer is both, i.e. there is a burst of turbulence followed by a relaminarization due to

the relatively high dissipation employed in the simulation. The runs are initialized with

eigenfunctions which evolve into the nonlinear regime, with a = 0.2, 3 = 0.2, R = R, =

50, 100, and 200, f2d = 0.01 and Ead = 0.001. The resolution for these runs is (32 x 32 x 64)

modes. Some data for these runs are given in Table II.

Evidence for a burst of turbulence is provided by an examination of the enstrophy

for cases 1-3 in Table II. The kinetic energy decay rate is proportional to the enstrophy,

fJ= (1W1 2), i. e., dE OWt< 1') (22)

and it can be used as a proxy for monitoring the level of small scale excitation. This

quantity is shown for three runs at different Reynolds numbers in figure 10. For all of the

cases there is a big jump in fl around t = 100, followed by a slow decrease. The magnitude
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of the burst increases with the Reynolds numbers, as does the subsequent level. Similar

behavior is seen in the perturbed mean square electric current.

The evolution is clarified by the time histories of the perturbed components (note

the normalization). Figure 11 and 12 show the logarithm of selected modal kinetic and

magnetic energies, with the z direction integrated out, for case 2 in Table II. Shown are

the 2D primary mode, k. = 0.2, ky = 0, the 3D primary mode k2 = 0.2, kv = 0.2, and

the longest wavelength sheetwise mode k. = 0, kv = 0.2. Both the magnetic and velocity

fields evolve in essentially the same way. Rapid initial growth followed by saturation is

seen in the sheetwise mode. The 2D and 3D primary modes exhibit a burst of growth

around t = 100, followed by a long term secular decay. The crucial feature in Figures

11 and 12 is the rapid growth and persistence of the sheetwise mode, especially in the

kinetic energy. These modes (i.e., all those with k, = 0) eventually dominate the system

energetics. Hence we see a burst of excitation around t = 100, followed by dominance of

the purely sheetwise mode. The same behavior is seen in higher harmonics. Preliminary

calculations at higher Reynolds numbers indicate that the non-sheetwise modes do not

decay as quickly. Consequently, we conjecture that the relaminarization is a dissipative

effect which will be less dominant at higher Reynolds numbers. We will address this more

fully in a subsequent paper.

Some morphological features of the evolution of the secondary instability are more

easily shown in configuration space. Figures 13 through 17 show, in the (z,y,z = 0)

plane, the time evolution of contours of 1B12 for run 1 in Table II. Two periods in z are

shown. Figure 13 shows these contours at t = 44, slightly before the rapid development

seen in figure 10. In this figure, the leftmost group of contours shows the position of a

magnetic O-point, the next set a magnetic X-point, and so forth. A sort of kinking is

evident in y, with the 0-points somewhat more susceptible than the X-points. This is the

basic form of the secondary mode. Figure 14 shows the increasingly nonlinear character

of the disturbance. Figure 15 shows the X- and 0-points beginning to interact. Figures

14 and 15 exhibit the continuing formation of more and more structure in the sheetwise
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direction. Figures 16 and 17 show later stages in the evolution of the system. It of

particular interest that the field gradients evolve toward being in the sheetwise direction,

whereas initially they were in the fieldwise direction. Implicit in this development is the

breakdown of the familiar laminar structures associated with magnetic reconnection, e.g.,

the magnetic islands, electric current filaments, and the flow pattern shown in Figure 3.

Little topological change is seen once the contours of 1B12 adopt the pattern shown in

Figure 17.

Its important to note that we have not allowed for the development of subharmonic

modes, i.e., the perturbations have set the spatial scales in the fieldwise and sheetwise di-

rections. In random noise initiated calculations that we have performed, we have identified

two modes, similar to modes identified for velocity free shear layers 41. (i.) a translational

mode, seen in figure 13, and (ii.) a pairing mode, which occurs when subharmonic in-

teractions are possible. This last mode is the 3D analog of the coalescence mode, and

it resembles the one identified in low Reynolds number experiments " ". The presence

of these two modes indicates that, as in hydrodynamical problems, the route by which a

system transitions to turbulence is not unique, and it depends heavily on initial conditions.

V. CONCLUSIONS

The key result of our simulations is that the saturated 2D reconnection state is unsta-

ble to 3D perturbations. This secondary instability is non-dissipative in character, and in

general it grows at a rate which exceeds the reconnection rate. The secondary mode growth

rate is relatively independent of the dissipative spreading of the neutral sheet, at least on

the time scales over which our simulations were performed. When the secondary mode

becomes nonlinear, the system undergoes a turbulent transition to a three-dimensional

quasi-steady state. During the late nonlinear phase, the sheetwise modes in the magnetic

field and the velocity field eventually dominate the system.

Hence, it is legitimate to inquire into the validity of the standard reconnection sce-

narios. Our work suggests that the conventional current sheet, vortex quadrupole system
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is difficult to sustain when the third spatial dimension is taken into account. Therefore, a

steady state involving such a configuration is unlikely. The observations can be construed

as supporting this contention, since the 2D laminar model consistently underestimates the

energy release rates required to account for phenomena such as solar flares. Of course, we

should emphasize that so far we have investigated only neutral sheets. The addition of a

strong field component in the sheetwise direction might affect the evolution of an electric

current sheet. We are presently addressing this issue.
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Apendix A: Proof of Ideal Stability for the Primary Equilibrium

Consider the ideal limit of equations 7, i.e., let R --+ oc and R, --, oc Furthermore,

decompose the eigenvalue as w = ac. Then equations 7 become

0 = -c{D 2 - (a2 + ,8}w + {(D 2 Bo) - Bo[D 2 - (a2 + p 2)]}b, (Ala)

and

cb. = -Bow, (Alb)

where we have set MA = 1 and Uo = 0. We solve equation (Alb) for b,, and substitute

the result in equation (Ala). After some algebra, this reduces to the form

[(C 2 - B2)Dw] - (a2 + #2)(c2 - B2)w = 0. (A2)

Now multiply this equation by the complex conjugate of w, w*, and integrate the result in

the crossfield direction using free slip boundary conditions. After some manipulation, we

have the result:

L (c2 -B 2)[IDw12 + (C2 + # 2)IwI2]dz = 0. (A3)
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Finally, separate equation (A3) into its real and imaginary parts.

r - B,)[IDw 2 + (G2 + / 2)1w12]dz = 0, (A4a)

f+00
crc 1 ]f_0 [IDwl2 + (a 2 + 12 )1w1 2 ]dz = 0, (A4b)

where cr + ici = c. Here equation (A4a) is the real part of equation (A3), and equation

(A4b) is the imaginary part. For equation (A4b) to be true, one of the following must be

true; c,. = 0, ci = 0, or w(z) = 0. We are not interested in the final option, hence one of the

first two must be true. An inspection of equation (A4a) shows that the equality cannot be

true if c,. = 0, and hence we conclude that

ci = 0, (A5)

Since w = ac = a(c, +ici), and the primary instabilities vary in time as e- i" t , the primary

equilibrium is stable in the ideal limit.

Appendix B: Numerical Algorithm

We solve equations 1 together with the boundary conditions with a semi-implicit spec-

tral scheme. The equations are discretized in the two periodic directions, z and y, with

a Fourier pseudospectral scheme. In the cross-sheet direction, z, a Fourier collocation

scheme is employed together with a hyperbolic mesh stretching. The method extends the

algorithm of Cain et al. 42, with sine and cosine functions used in z, together with a cotan-

gent mapping for expansion on an infinite interval (see Canuto et al. 4, pp 74-75). The

nonlinear terms are advanced in time with a third order Runge-Kutta method, while the

vertical diffusion is advanced with a Crank-Nicolson scheme. A backward Euler pressure

correction is performed at each time level. The same type of correction is performed at

each level to ensure the solenoidality of the magnetic field 4 5 i.e. we define a scalar

function 40 such that

V 20 + V. B = 0. (B1)
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The magnetic field is corrected after the advection-diffusion step so that

B' = B + VO, (B2)

and hence

V.B'=0. (B3)
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TABLE I.

Case R = Rm 72d 73d 7

1 10 0.2 .042485 .023348 -. 003
2 20 0.2 .043658 .029808 .007
3 100 0.2 .033066 .025587 .046
4 100 0.5 .033066 .007061 .055
5 100 1.0 .033066 STABLE .048
6 100 1.5 .033066 STABLE .031
7 100 2.0 .033066 STABLE .006
8 100 2.5 .033066 STABLE -. 023
9 200 0.2 .026636 .020737 .051
10 200 0.5 .026636 .007288 .062
11 200 1.0 .026636 STABLE .059
12 200 1.5 .026636 STABLE .051
13 200 2.0 .026636 STABLE .039
14 200 2.5 .026636 STABLE .023
15 200 3.0 .026636 STABLE .004
16 290 3.5 .026636 STABLE -. 017
17 400 0.2 .020551 .015915 .051
18 1000 0.2 .013818 .010528 .048

TABLE II.

Case a=g R R,,, 2d ESd 72d 73d

1 0.2 50 .02 .001 .03896 .02938
2 0.2 100 .02 .001 .03307 .02559
3 0.2 200 .02 .001 .02664 .02074

26



30 TEARING 1PLPHP=.2.BETA=.O.R=RM=20OI 3C TEPRING iQLPHA= 2.8ETQ= 2.R=RM=2O0l

.50- 50K/

EAL W -.0 6RELF
a IMAG BZ w RERLWB-

a. b.

30 TEARING (RLPHA=.2,BETR::.S.R=RM=200) 30 TEARING IALPHR=.2.BETP=2.0RRMl=200)

2.50 15
5 L R~q 6

U IMP, e-?
w I L

-15 k t -5 5 -2 -?C 5 -1

Figure 1. Primary unstable eigenmode vs z, the crs-hetdrcio.A odshv

a = .2, R = R,, = 200. a. 83 = 0, 2D primary unstable mode; b. #3 = .2, 3D primary

unstable mode; c. /3=.5, 3D primary unstable mode; d. /3=2., a nonpropagating

3T) damped mode.
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Figure 2. Growth rates of unstable eigenmode vs fl, the sheetwise wavenumber. For the

two-dimensional case, =0. The results confirm the Squires theorem.
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Figure 3. Contour plots in the z - y plane exhibiting the structure of the 2D saturated

state for case 9 of Table L: a. magnetic field, b. sheetwise electric current density and,

c. velocity stream function.
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Figure 4. Time evolution of the logarithms of the two and three-dimensional total energies

for case 9 in Table I. Note the existence of a well defined period of linear growth of

the 3D modes after the 2D modes saturate.
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Figure 5. 'Time evolution Of T13,T23,D and y (3d growth rate) for case 9 of Table I.
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Figure 6. Time evolution Of TI 3 , T2 3, D 3 and ;f (3d growth rate) for case 11 of Table 1.
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Figure 7. Time evolution of T13 ,T 2 3,-D3 and ;F (3d growth rate) for case 13 of Table 1.
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Figure 8. Time evolution Of T 13 ,T 23 ,D and 57 (3d growth rate) for case 18 of Table I.
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Figure 10. Time evolution of the enstrophies for cases 1, 2, and 3 of Table 11. The solid
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36



30TERRING (RLPHR=BETR=.2, R=RMzIOO)
0

-2

-3

0 -7

-6

-11

-12
0 00 00 00 00 0 000 000DD0 00 0 00

U-) DL C n 0 l 0 L 0 In 0 nC uD 0 n 0D In 0 In 0 In
- ~ - mN (NJ -,:r (** L n u-n w (0 r- r- mD mD a) c 5 b

T IME

Figure 11. Time evolution of velocity modal energies: primary modes for case 2 of Table

HI.
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